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EXECUTIVE SUMMARY 

The onset of laminar axisymmetric Rayleigh-Benard convection 

is investigated for a low-Prandtl number liquid metal in a 

cylindrical container. All surfaces are considered to be solid and 

no-slip. Two separate cases are examined for the thermal boundary 

conditions at the side wall, one with conducting and the other with 

insulated surface. 

The governing Boussinesq system is first perturbed and then 

simplified by introducing a Stokes stream function. Subsequently, 

a Chebyshev Galerkin spectral model is employed to reduce the 

simplified system to a system of first-order nonlinear ordinary 

differential equations. A local stability analysis determines the 

two values of the first critical Rayleigh number, Ra,,, for the 

insulated and conducting side walls. 

As expected, the conducting Ra,, value of 2882.5 obtained from 

the present approach exceeded the corresponding insulated Ra,, value 

of 2331.6. For the insulated case, an earlier study using a 

different numerical approach suggests that Ra,, = 2261.9, while an 

experimental study measured Ra,, = 2700. 
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CHAPTER 1. INTRODUCTION 

The homogeneity of semiconductor crystals is a primary 

concern of the electronics industry. The refinement of 

techniques for controlling the composition of semiconductor 

crystals during growth has been an integral part of recent 

advances in electronic microcircuitry. The difficulties and 

compromises inherent in growing homogeneous crystals have 

given impetus to both theoretical and experimental efforts to 

gain a better understanding of crystal growth phenomena. 

Recent theoretical work in the fields of nonlinear dynamics 

and stability theory has been promising in determining the 

onset of flow patterns in the liquid that affect the 

homogeneity of the resulting crystal. The computational 

difficulties of modeling a fluid on the route to turbulence 

remain formidable, however. 

Convection is the governing phenomenon in a number of 

crystal growth methods (e.g., Ostrach, 1983). It is present 

in a wide variety of natural and industrial processes, among 

them some of interest to civil engineers. Thermal 

instabilities in the atmosphere (e.g., Lorenz, 1963) and in 

the borders of lakes (e.g., Horsch, 1988) are the product of 

convective forces. Secondary currents in stream meanders have 
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some similarities to the convection rolls present in the 

laminar regime of buoyancy-driven convection, the difference 

being one of exchange of momentum rather than heat. The study 

of convection in the more controlled conditions of crystal 

growth allows a better understanding of its effects in these 

other more complicated phenomena. 

A single semiconductor crystal can be formed from a 

liquid alloy, or melt, in the presence of a vertical 

differential temperature gradient. Although the most common 

configuration has a higher temperature at the top of the melt 

than at the bottom, the most interesting fluid phenomena are 

found in the tghot-on-bottomtt configuration (e.g., Ostrach, 

1983). The "hot-on-bottomtt configuration is the case 

considered in the present study. 

The transfer of heat in the melt is controlled by 

conduction or by some form of convection, depending upon the 

strength of the temperature gradient. The physical properties 

of the crystal depend upon the type of heat transfer and the 

flow field in the melt during growth (Kim et al., 1972). The 

effect of convection on the crystal composition depends upon 

the degree of mixing in the melt (e.g., Muller et al., 1984). 

It is therefore possible to obtain some measure of control of 

the composition of the crystal by varying the flow pattern in 

the melt. Determining the particular flow regime in the melt 

at any time is a matter of determining the temperature 
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gradient at the onset of each of the different convective flow 

regimes. 

Single semiconductor crystals formed from alloys 

containing metals are a class of crystals with important 

industrial applications. Crystals such as lead-tin-telluride 

(LTT) have light-sensitive properties that have made possible 

the development of night-vision devices (Parker and Johnson, 

1981). These crystals have unique problems associated with 

their growth. Because a melt containing a metal may be highly 

sensitive to changes in the temperature gradient 

(Krishnamurti, 1973), control of the growth of the crystal can 

be problematic. In an effort to delineate the different flow 

regimes in such a melt, it is the purpose of the present study 

to determine the onset of the transition between the 

conductive and laminar convective regimes. 

1.1 The Growth of Crystals from the Melt 

There are a number of forces involved in the growth of a 

crystal. In a multi-component melt, convectionmay be induced 

by instabilities that are solutal as well as thermal (Crouch 

et al., 1985). In the absence of surface tension effects and 
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any horizontal temperature gradients, the flow in the melt is 

strictly some form of Rayleigh-BBnard (buoyancy-driven) 

convection (e.g., Charlson and Sani, 1970). 

Creating a multi-component crystal that is homogeneous 

can be an elusive undertaking. Although it is possible to 

grow a crystal in either a conductive or a convective flow 

regime, each heat transfer mechanism induces certain phenomena 

that create difficulties in controlling homogeneity. Under 

purely conductive heat transfer conditions, a multi-component 

crystal with a nearly constant concentration profile (Fig. 1) 

can be produced. The homogeneity of this crystal results in 

uniform electrical properties. However, large axial 

temperature gradients are necessary to avoid constitutional 

supercooling and dendritic growth at the crystal-melt 

interface (Tiller et al., 1953 and Mullins and Sekarka, 1964). 

Sufficiently large axial temperature differences induce large 

radial temperature differences that are inherently 

destabilizing and initiate convection (e.g., Tritton, 1988). 

Convection that is unsteady produces a varying concentration 

profile in a multi-component melt (Fig. 1). The more vigorous 

the convective mixing, the greater the occurrence of 

backmelting at the melt-crystal interface and the possibility 

of the formation of striations of differing compositions 

(e.g., Kim et al., 1972). Determination of the axial 

temperature gradients at which the flow regime transitions 
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occur is therefore essential for balancing the deleterious 

effects of these two heat transfer mechanisms, 

In the present study the melt consists of the single 

component tin, In a single-component melt only thermal 

instabilities are significant, allowing this type of 

instability to be examined without the interference of most of 

these other complex phenomena. 

The specific response of the liquid melt to the forcing 

temperature gradient depends upon three parameters: (1) the 

strength and orientation of the temperature gradient, measured 

by the nondimensional Rayleigh number, Ra, (2) the relative 

rates of molecular diffusion of heat versus momentum by the 

fluid, measured by the Prandtl number of the fluid, Pr, and 

(3) the relative dimensions or aspect ratio y of the fluid 

container as well as its shape (e.g., Higgins, 1987). For a 

given fluid and container geometry, as the Rayleigh number is 

gradually increased, the melt passes from the conductive heat 

transfer state through a sequence of convective flow regimes: 

laminar, periodic, quasiperiodic, and turbulent (Krishnamurti, 

1973)- The Rayleigh numbers at which these transitions or 

Rayleigh instabilities occur are called critical Rayleigh 

numbers. 

The liquid metals used to grow semiconductor crystals are 

characterized by low Prandtl numbers, typically less than 0.5 

(e.g., Xnuteson, 1989). Flow regime transitions for these 
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low-Prandtl number fluids occur over a narrower range of 

Rayleigh numbers compared to fluids of higher Prandtl number 

(Krishnamurti, 1973) (Fig. 2). In the present study, a tin 

melt of Prandtl number 0.01 is heated from below in a closed 

cylindrical container with height equal to its radius. The 

first critical Rayleigh number marking the onset of the 

transition from conduction to the laminar convection regime 

for this set-up is determined. Although this critical 

Rayleigh number is independent of the Prandtl number and 

consequently of the fluid (e.g., Krishnamurti, 1973), the 

techniques used in this study illustrate the basic method in 

the determination of the entire series of critical Rayleigh 

number values for a buoyancy-driven flow. 

1.2 The Vertical Bridcnnan Techniaue 

A common method for growing single crystals is the 

vertical Bridgman technique (e.g., Carlson et al., 1984). In 

the Vop-down" vertical Bridgman configuration, a cylindrical 

ampoule of the liquid metal is moved upward through a linear 

vertical temperature gradient that is hotter on the bottom 

(Fig. 3). The sides surrounding the ampoule are insulated, 

and the top and bottom surfaces of the ampoule are conducting. 

The crystal grows from the top of the ampoule down. The shape 
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of the crystal-melt interface is curved, with the fastest 

growth generally occurring at the sides. The Bridgman 

apparatus effectively makes the melt a closed system, so that 

there are no free surfaces and no destabilizing surface 

tension gradients. 

The enclosed nature of the Bridgman furnace setup (Fig. 

3) as well as the opacity of liquid metals do not permit the 

usual flow visualization techniques in the experimental 

apparatus. Instead, other techniques have been developed to 

assist in the determination of the temperature and velocity 

patterns for a liquid metal during a crystal growth 

experiment. For example, thermocouples arranged 

systematically about the cylindrical ampoule (Fig. 4) allow a 

temperature time series to be recorded (Fig. 5). Deviations 

from the stationary conductive linear temperature gradient 

permit the large-scale temperature variations to be detected. 

Because of the correlation between the temperature and 

velocity fields, especially in the vertical direction, an 

approximation to the large-scale flow field can be determined 

experimentally. This approximation is useful because it is 

precise enough to indicate the type of convective flow regime 

present. The Rayleigh instabilities may be found at the 

temperature gradients where there is a distinct and stable 

qualitative change in the temperature and flow fields. 
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1.3 The  Solution Amroach 

In the present study, the onset of laminar axisymmetric 

convective flow of liquid tin in a cylindrical container whose 

radius is equal to its height is investigated. The crystal- 

melt interface is assumed to be planar. The height of the 

melt column is considered to be constant for the time scale of 

the study. The flow is considered to be axisymmetric, 

producing a rotational flow field in the shape of a torus. 

Because of the rigid surfaces of the container, the velocity 

is required to satisfy the no-slip condition--attain a zero 

value--at the solid boundary. For the thermal boundary 

conditions, the top and bottom are conducting faces. The side 

wall is insulated in the vertical Bridgman technique, but both 

insulated and conducting cases are considered in the present 

study as a check upon the validity of the model. Because of 

the loss of heat through a conducting side wall, the 

temperature gradient and critical Rayleigh number necessary to 

initiate convection should be higher than for the insulated 

case. 

In the present study, a Chebyshev-Galerkin spectral 

method is used to transform the governing nonlinear system of 

partial differential equations into a low-order nonlinear 

system of ordinary differential equations. A local stability 

analysis of this system is used to determine the first 
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critical Rayleigh number, 

In the present work, the problem is viewed first from a 

physical perspective. In Chapter 3, the notion of physical 

stability in Rayleigh-B6nard convection is explored, and the 

assumptions of the governing Boussinesq system are 

investigated, In Chapter 4, the Boussinesq system is 

perturbed and simplified. The dependent variables are 

represented by finite Chebyshev series, and a Galerkin 

spectral method is used to transform the Boussinesq system 

into an approximate system of first-order ordinary 

differential equations. 

In Chapter 5, the two types of instabilities of a 

mathematical system are examined. The nonlinear system is 

perturbed, linearized, and put into variational form. The 

conditions under which linear analysis of a nonlinear system 

is valid is presented. Such a linear analysis based upon the 

eigenvalues determines the critical Rayleigh number at the 

transition from conduction to laminar convective flow. Both 

insulated and conducting side walls are considered. 

The results are compared to a numerical study by Charlson 

and Sani (1970), who found the first critical Rayleigh number 

for the onset of laminar convection for both thermal boundary 

conditions for a range of aspect ratios. The results are also 

compared to the experimental results of Muller et al. (1984) 

for liquid gallium. 
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melt (Rnuteson, 1989). 
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F i cNre  3. Vertical Bridgman apparatus (Xnuteson, 1989). 
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Bridgman furnace (Knuteson, 1989). 
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in a crystal melt. The TC-# indicates the particular 

thermocouple (Knuteson, 1989) . 



CHAPTER 2. GITERATURE REVIEW 

The difficulties that have been encountered in the study 

of Rayleigh-BBnard instabilities parallel those of two of the 

most intractable problems in fluid mechanics: hydrodynamic 

stability and the numerical modeling of turbulent flow. 

Despite the presence of only a single driving force, the 

nonlinear nature of Rayleigh-BBnard convection gives it a 

complex and often 81chaotics1 behavior that is difficult to 

describe and predict (e.g., Berg6 et al., 1984). While the 

determination of instabilities in buoyancy-driven flows is 

intrinsically of interest because of the presence of Rayleigh- 

BBnard convection in a number of important industrial and 

natural processes, the phenomenon has lately attracted more 

attention because the relative simplicity of the system lends 

itself to the study of the mechanisms involved in the 

transition to turbulence (e.g., Gleick, 1988). 

The development of mathematical tools for the study of 

Rayleigh-BBnard convection has not kept pace with the 

refinement of experimental efforts. Present numerical methods 

for solving the governing system of partial differential 

equations cannot adequately define the whole range of flow 

regimes and transitions (e.g., Tritton, 1988). In the field 

of nonlinear dynamics, methods for the study of mathematical 

stability have seen rapid growth in the past three decades but 

15 
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are still undergoing development and refinement. 

Consequently, studies in Rayleigh-BBnard convection have been 

marked by the continued use of experimental studies to verify 

the theoretical approaches (e.g., Tritton, 1988). 

BBnard (1900, 1901) was the first to conduct rigorous 

experiments on the problem of buoyancy-driven instabilities in 

a thin layer of spermaceti heated from below in a 

gravitational field. At the free surface of the fluid he 

observed a number of hexagonal convection cells with flow 

rising in the center of the cell and falling at the perimeter. 

It was found later by Block (1956) and Pearson (1958) that the 

cause of these cells was not vertical differences in buoyancy 

in the fluid layer, but inherently destabilizing surface 

tension gradients caused by surface temperature variations. 

From the theoretical standpoint, the first useful 

simplification of the equations governing buoyancy-induced 

flows in a thin fluid layer, the Boussinesq system, was not 

completely formulated until the turn of the century by 

Boussinesq (1903). Boussinesq reasoned that for a small 

vertical temperature gradient, density variations were 

significant only in the buoyancy term of the Navier-Stokes 

equations. 

Lord Rayleigh (1916) assumed that the flow in BQnard's 

experiment was buoyancy-induced. He used a fluid layer thin 

enough to ignore the effect of the sidewalls on the flow 
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pattern. He performed a linear stability analysis on the 

Boussinesq system. Linear stability theory allows 

determination of the first critical Rayleigh number as well as 

the wavelength of the destabilizing perturbation, but it does 

not allow determination of the flow patterns of the velocity 

field (e.g., Knuteson, 1989). Subsequent investigations have 

refined considerably the linear stability of fluid layers of 

infinite lateral extent (e.g., Chandrasekhar, 1961). 

Experimental work by Koschmieder (1966, 1967, 1969) 

showed that the side wall of the fluid container does indeed 

exert an influence on the convective pattern of the flow. For 

small vertical temperature gradients and certain values of the 

aspect ratio, the velocity field takes the form of convective 

roll cells in the shape of the surrounding side walls. In a 

cylindrical container under such conditions, he found 

axisymmetric rolls. Theoretical studies by Davis (1968) and 

Segel (1969) using large but confined geometries obtained the 

flow fields found in these experiments for rectangular box- 

shaped containers. 

The effect of the Prandtl number on flow regime 

transitions was investigated in exhaustive experimental 

studies by Rrishnamurti (1970a, 1970b, 1973). She found that 

flow regime transitions become increasingly more sensitive to 

variations in the Rayleigh number for fluids with Prandtl 

numbers approaching zero, In mercury, for example, with a 
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Prandtl number of 0.025, only turbulent flows are observed 

after the transition from conduction (e.g., Tritton, 1988). 

Until the refinement of certain spectral methods of flow 

representation (Orszag, 1971a,b), the theoretical study of 

Rayleigh-B6nard convection in cylindrical geometries was 

confined to the case of a side wall under gtslipls conditions 

(e-g., Pellew and Southwell, 1940; Zierep, 1963; Ostrach and 

Pneuli, 1963; Liang et al., 1969). Zierep found that a no- 

slip side wall did not allow separation of variables. Orszag 

was able to develop flow representations using expressions 

other than Fourier series that allowed a rigid no-slip side 

wall and more realistic flow representation (Orszag, 1971a, b) . 
Charlson and Sani (1970) used a linearized Boussinesq system 

and a Rayleigh-Ritz method with Bessel function flow 

representation to find the first three critical Rayleigh 

numbers for axisymmetric flow. They considered both 

conducting and insulated side walls. Experimental work by 

Muller et al. (1984) with liquid gallium compared fairly well 

with their first critical Rayleigh number results. 

A straightforward numerical solution to the Boussinesq 

system of equations is possible using a number of techniques. 

There are two tasks that an efficient method must accomplish. 

The first is to efficiently model the whole range of flow 

regimes with high resolution on the route to turbulence. This 

flow modeling is complicated by the difficulty of representing 
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the dissimilar flow patterns and ever increasing modes of the 

flow on the route to turbulence. Tarman (1989) used two 

finite Fourier series of 106 and 297 terms to model turbulent 

Rayleigh-Bgnard convection in a three-dimensional box of 

infinite horizontal extent and still was not able to 

accuratelymodel vertical vorticity. Computational efficiency 

and rapid convergence are therefore paramount. Secondly, it 

is desirable to be able to detect flow regime transitions 

easily and precisely. Obtaining an efficient representation 

of the dependent variables temperature and velocity that can 

be varied easily with changes in other parameters such as the 

RayPeigh number to determine stability is difficult. 

Finite difference (e.g., Muller et al., 1984), finite 

element (e.g., Carlson et al., 1985), and spectral methods 

(e.g., Canuto et al., 1988) are possible numerical approaches 

to Rayleigh-B6nard convection that can satisfy these 

conditions. Their application depends upon the particular 

characteristics of the problem under consideration. The 

presence and type of nonlinearities is often a deciding factor 

(e.g., Canuto et al., 1988). The primary difference between 

the finite difference and finite element methods versus the 

spectral methods is that the former divide the domain into a 

grid and solve the system for local grid points or elements, 

whereas the latter use global expressions to represent the 

dependent variables (e.g., Canuto et al., 1988). 
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To determine the instabilities, one approach is to mimic 

the sensitivity approach of the experimentalmethods. As the 

Rayleigh number is gradually increased, instabilities appear 

as distinct qualitative changes in the flow pattern solutions 

(e.g., Deane and Sirovich, 1990; Le QuerQ and Alziary de 

Rochefort, 1986). For computationally intensive models, this 

technique is tedious, as it necessitates implementation of the 

computational procedure with each new value of the Rayleigh 

number. This approach can also be complicated by the 

necessity to use long evolutions of the flow to avoid 

mistaking transient or intermittent flows for the true 

transitional flow. However, it may be the best approach to 

determining stability if the transformed systems of the 

spectral methods are difficult to analyze for stability. 

The use of Chebyshev functions to model flows began with 

Orszag (1971a,b). He found it was possible to use Chebyshev 

series to model rigid side walls. In addition, he found that 

Chebyshev representations of dependent variables were suited 

to many hydrodynamic stability problems because of the 

accuracy and conciseness of Chebyshev approximations and their 

infinite-order accuracy compared to finite difference 

approximations. He used Fast Fourier Transforms to transfer 

between the physical and spectral spaces (1971b). There have 

been a number of studies of convection to use Chebyshev series 

to model two-dimensional and three-dimensional flows. 



21 

Haldenwang (1986) found that Chebyshev spectral methods were 

suitable to modeling dissipation in a convective boundary 

layer at high Rayleigh numbers. Le Quer6 and Alziary de 

Rochefort (1986) found the rapid convergence properties of 

Chebyshev functions to be advantageous in the problem of 

Rayleigh-Bgnard convection in a square cavity. Some 

difficulties that are encountered in these Chebyshev spectral 

flow representation techniques are the necessity of using an 

implicit or semi-implicit evaluation of the diffusive terms in 

the Navier-Stokes equation and the lack of natural boundary 

conditions for the pressure (Le Quer6 and Alziary de 

Rochefort, 1986). 

If the nonlinearities of the system are no more than 

quadratic, as they are in the Boussinesq system, then one 

efficient technique may be to use a Galerkin spectral method 

(Canuto et al., 1988). This approach transforms the 

Boussinesq system into a low-order system of ordinary 

differential equations. A stability analysis canthen be used 

to determine the instabilities of this transformed system. 

The stability analysis of the dynamical system that results is 

a theory unto itself (e.g., Wiggins, 1990). The problem 

arises that a very complex nonlinear analysis may be 

necessary, one more difficult than the sensitivity approach of 

the other methods. 

For the present study, with its aim of determining only 
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the first transition to a relatively simple and approximately 

known laminar flow, a Galerkin method is well-suited to the 

problem, It is possible to represent the flow and the 

nonperiodic boundary conditions concisely. A local stability 

analysis is sufficient to determine the first critical 

Rayleigh number. The transformed system consists of only 

three equations, so that the eigenvalue equation is a cubic 

and the solution will be exact. 

The present study parallels the classic nonlinear dynamic 

analysis of Lorenz (1963). Lorenz used a shorter form of the 

Fourier Galerkin spectral method representation of Saltzmann 

(1962) to analyze the stability of Rayleigh-Bbnard convection 

cells in the atmosphere. He considered periodic boundary 

conditions in a two-dimensional Cartesian framework and an 

infinite lateral extent. He discovered a rich behavior in the 

resulting low-order system of ordinary differential equations. 

His model was not extensive enough to accurately represent the 

whole range of actual flow regimes and Rayleigh instabilities 

(Nese, 1987), but it gave impetus to the study of llchaos,ll the 

stability of nonlinear dynamical systems (egg., Gleick, 1987). 

In the present work, the use of Chebyshev series in 

cylindrical coordinates to model the flow variables allows the 

imposition of a rigid, no-slip side wall in the cylindrical 

container. A Galerkin method is then used to transform the 

governing system of nonlinear partial differential equations 
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into a system of first-order nonlinear ordinary differential 

equations. A local stability analysis of the transformed 

system similar to that of Gelaro (1987) is used to determine 

the first critical Rayleigh number. 



CHAPTER 3. RAYLEIGH-BENARD CONVECTION 

The growth of a crystal from the melt is a solidification 

process governed by the two heat transfer mechanisms in 

fluids, conduction and convection. The particular form of 

heat transfer depends upon the strength of the temperature 

gradient. As the temperature gradient is gradually raised 

from an initial zero value, the melt transfers heat by 

conduction and then by successively more vigorous forms of 

Rayleigh-Bgnard convection--laminar, periodic, quasiperiodic, 

and turbulent. A useful mathematical model must accurately 

represent both the physical complexity of each flow field as 

well as the onset of the transitions between them. 

3.1 The Physics of R a y l e i a h - B h a r d  C o n v e c t i o n  

Rayleigh-Bbnard convection is flow that is driven by 

buoyancy gradients in the fluid. As an illustration of the 

basic physical mechanism of this type of convection, consider 

a column of fluid heated from below in a gravitational field 

(Fig. 6). The higher temperatures near the bottom cause the 

fluid there to expand, decreasing its density relative to the 

colder, more dense fluid above it. In this unstable 

equilibrium, the bottom fluid tends to rise and the top fluid 

24 
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to fall relative to each other. Motion is initiated only if 

the driving temperature gradient is high enough to overcome 

the forces opposing motion. These forces are the frictional 

effect of the fluid viscosity and the damping effect of 

thermal conductivity, the tendency of the fluid to transfer 

heat by conduction rather than by convection. The direction 

of the flow rotation is determined by the initial conditions 

(Liang et al., 1969). If flow is initiated, the flow is 

horizontal at the top and bottom in order to satisfy 

continuity. The laminar convective flow pattern that is 

formed is a roll cell or Bgnard cell. 

The simplest physical configuration illustrating the 

mechanisms of Rayleigh-Benard convection in the crystal melt 

consists of a layer of fluid between two extensive horizontal 

plates in a gravitational field (Fig. 7). Consider that the 

temperature of the bottom plate T2 is higher than the 

temperature of the top plate T,, T2 > T1 (Fig. 7). For the 

conductive case the resulting temperature profile is linear. 

The ratio h/L << 1 so that there is no significant friction at 

the vertical boundaries and no influence of the sidewall on 

the flow pattern. 

Consider a temperature gradient that is marginally 

supercritical, sufficient to produce laminar convective flow 

from the conductive regime. Both conductive and convective 

heat transfer mechanisms are present in this flow, although 
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the latter is dominant. At the bottom of the fluid layer, 

heat from the bottom plate is transferred to the adjacent 

fluid by conduction. The increased buoyancy of this fluid, 

caused by the local decrease in its density, induces it to 

rise. Convective flow then transfers the heat to the vicinity 

of the top plate, where it is transferred from the fluid to 

the top plate again by conduction. The fluid, having lost 

much of its heat, falls and is heated on its way down. When 

it reaches the vicinity of the lower plate the whole process 

is repeated. 

The linear temperature gradient typical of conduction is 

modified by convection (Fig. 7). The temperature in the 

convective region tends to a uniform temperature distribution, 

cooler fluid at the top being heated, warmer fluid at the 

bottom being cooled. The more turbulent the flow, the more 

uniform the temperature distribution tends to be in this 

region (e.g., Tarman, 1989). Temperature gradients in the 

conductive regions at the top and bottom boundaries are steep. 

For the marginally supercritical temperature gradients 

typical of laminar convective flow, the number of parallel 

rolls that are formed in such a thin fluid layer depends upon 

the aspect ratio of the fluid container. The vertical 

dimension of these single rolls is determined by the scale of 

the height of the fluid layer, h (Shirer, 1987) (Fig. 7). 

This vertical dimensioning is valid even for containers with 



27 

h/L > 1 (e-g., Tritton, 1988) (Fig. 6). For a marginally 

supercritical temperature gradient, a single convection cell 

will be present in a cylinder with h/L > 1 (e.g., Muller et 

al., 1984). 

Although the flow field may become more complex with 

increasing temperature gradient, these basic heat transfer 

mechanisms of conduction at the boundaries and some form of 

convection in the middle remain valid, The flow fields for 

the other flow regimes are not so simple, but they can be 

thought of as superpositions of many different modes of this 

basic flow. 

3.2 The Boussinesa System 

The system of equations governing Rayleigh-B6nard 

convection consists of the continuity (conservation of mass), 

conservation of energy, and Navier-Stokes (conservation of 

linear momentum) equations. In cylindrical coordinates, these 

equations are: 

?e + v . (pv )  = 0 a t  



where 

(3.3a) 

(3.3b) 

(3.3c) 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 
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(3.4e) 

(3.4f) 

where 

C, = heat capacity at constant volume, per unit mass 
(gr, ge, g,) = acceleration of gravity 

p = pressure 
q = energy flux relative to mass average velocity 
T = &solute temperature 
t = time 
v = velocity vector = (v,,vO,vz) 

p = dynamic viscosity 
p = fluid density 
r = viscous stress tensor 
rij = viscous stress tensor component 

( ) v  = per unit volume 
( : ) = scalar product of tensors 

This system is solved for the dependent variables v, p ,  and T 

in order to determine the velocity, pressure, and temperature 

fields. 

This system of three partial differential equations is 

nonlinear and coupled and is consequently difficult to solve 

numerically. The system can be simplified for buoyancy-driven 

convection under certain conditions to the Boussinesq system 

(Boussinesq, 1903). The derivation is based on the assumption 

that for a small temperature gradient in the fluid layer, the 
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variation in the density is small but sufficient to cause flow 

due to buoyancy differences (e.g., Drazin and Reid, 1981). 

The density is assumed to be constant except in the buoyancy 

term pg,  of Navier-Stokes equation 3 . 3 ~ ~  where the density is 

assumed to vary as a linear function of the temperature, 

Ap = - u ~ , A T  (3.5) 

where 

p = fluid density 

a = coefficient of thermal expansion of the fluid 
po = reference density 

A T  = temperature difference in the fluid layer 

Other assumptions that are made in the derivation are 

(e.g., Knuteson, 1989): 

1. Gravity is the only external force and is 

directed downwards. 

2. Accelerations in the fluid are small compared 

with g. 

3. All physical properties of the fluid are 

constant 

4. There is no internal heat generation. 

All these assumptions are satisfied in the system considered 

here. 

Rayleigh-BBnard convective flow in a low-Prandtl number 

crystal melt in the Bridgman configuration is therefore 

governed by the Boussinesq system with the following specific 
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conditions: a cylindrical geometry, no-slip conditions at all 

surfaces, conducting top and bottom, an insulated side wall, 

and a planar surface at the crystal interface, In three- 

dimensional cylindrical coordinates, the nondimensional form 

of the Boussinesq equations (continuity, conservation of 

energy, and Navier-Stokes) is (e.g., Knuteson, 1989): 

v.v" = 0 

where 

gz I 
g, acceleration of gravity 

unit vector in the z-direction 

height of the cylinder 
P*, 8fZ*,t*) r pressure 

U 
K 

Prandtl number = - Pr I 

radius of cylinder 
nondimensional radial coordinate RC 

r ,  

Rayleigh number = gaATh3 
U K  

T*(r*, 8 ,  z*,t*) , temperature 
T2 f 
TI I 

Z f  nondirnensional vertical coordinate 

temperature at the bottom boundary 
temperature at the top boundary 
temperature difference in the fluid layer = Tz - TI 

velocity vector 4, * v*(r rb*,t*) I 

a, volumetric thermal expansion coefficient 
Y r  aspect ratio = h/R 
8 ,  angular coordinate 
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K f  thermal diffusivity 
v ,  kinematic viscosity 

Osr SI, O S ~ S ~ T ,  -y/2sz*sy/2 * 
cylindrical coordinate system 

Forthe nondimensionalization, velocities are scaled with 

K/h, temperature with A!P, pressure with p u 2 / h 2 ,  time with 

h2/u, and lengths with the height of the fluid column, h: 

(3.9a) 

T - T, 
AT T* = (3.9b) 

tK t* = - 
h2 

(3.9c) 

(3.9d) 

(3.9e) 

(3.9f) z z* = - 
h 

For this particular problem, with the radius of the 

The cylinder equal to its height, the aspect ratio y is one. 

velocities are zero at the rigid, no-slip boundaries: 

v* ( 1, e, z* , t* = v* ( r* , 8 ,  -y/ 2, t* = v* ( r* ,e, y/ 2, t* 
= o  (3.10) 

The top and bottom faces are conducting surfaces and are at 

constant temperature: 
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(3 lla) 

(3.11b) T* (r*, 0 , -y/2 , t*) = c2 , C2 ra , C2>0 O K  

For the side wall, two cases are considered, insulated 

aT' - (1, e, z* ,  t*) =O 
* 

(3.12) 

or conducting surfaces: 

T*(l, $,z*, t*) =C, C€R, C>O°K (3.13) 

It is evident from equations 3.6-3.8 that dynamic 

similarity is attained by using the nondimensional parameters 

Ra and Pr. It is not possible to use the Reynolds number for 

dynamic similarity because of the absence of a characteristic 

velocity in the conductive regime, 

The Rayleigh number is a relative measure of the forcing 

mechanisms that drive Rayleigh-BBnard convection and the 

opposing mechanisms that damp the flow. The buoyancy 

differences in the fluid layer that create the thermal 

instability are the result of density variations. These 

variations are caused by the temperature difference A!T and the 

consequent thermal expansion of the fluid, indicated by a. 

The height of the fluid layer h is included in the formulation 

because it is essentially the temperature gradient that is the 

forcing mechanism. Two effects inhibit convective flow, the 

viscosity v, the resistance of the fluid to shear deformation, 

and the thermal diffusivity K ,  the tendency of the thermal 
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conductivity of the fluid to transfer heat by conduction 

rather and thus postpone the onset of convection. 

The Prandtl number, a property of the fluid, indicates 

the relative molecular transport rates of momentum versus 

heat, It is evident from the Navier-Stokes equations (eqs. 

3.3-3 , 4) that a low Prandtl number significantly amplifies the 

role of the inertial nonlinearity (e.g., Knuteson, 1989). 

This effect is felt from the initiation of laminar convection. 

The aspect ratio y indicates the relative size of the 

container. It is one factor that determines the number and 

size of the convection cells in the container. For laminar 

convection in the cylinder of aspect ratio one, only one 

concentric roll is anticipated (Fig. 8). 

The Boussinesq system has no direct analytical solution. 

Numerical solutions are approximations of the true solution, 

and for this reason they are not able to accurately describe 

or predict the full range of flow patterns of the fluid (e.g., 

Tritton, 1988). In addition, the theory of stability of 

systems of partial differential equations is incomplete. 

Determination of the stability of the Boussinesq system must 

be approached indirectly, either by transforming to an 

approximate system of ordinary differential equations that is 

amenable to stability analysis or by a parametric study to 

detect qualitative changes in the flow or temperature fields. 

In the present study the former approach is taken. A 
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relatively simple flow is approximated using finite Chebyshev 

series. A Galerkin spectral method is used to transform the 

Boussinesq system into a first-order system of three ordinary 

differential equations. A local stability analysis is then 

performed to determine the first critical Rayleigh number. 
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*l 

FicNre 6. Rayleigh-Bgnard convection in a fluid column. 

TZ > TI* 
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-------- conductive temperature profile 
convective temperature profile 

Fiaure 7. Parallel laminar convection rolls in a closed 

rectangular box with slip side wails. The convective 

redistribution of heat is evident from the temperature 

gradients in the fluid layer (from Shirer, 1987). 
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Ficrure 8. Axisymmetric convection roll in cylinder of aspect 

ratio one (from Muller et al., 1984). 



CHAPTER 4. THE CHEBYSHEV-GALERKIN SPECTRAL METHOD 

Galerkin spectral methods transform a system of partial 

differential equations into a low-order system of ordinary 

differential equations, a form more amenable to solution as 

well as to stability analysis. A Chebyshev-Galerkin spectral 

method is especially useful for modeling nonperiodic laminar 

flows in simple geometries (Orszag, 1971b). Many such flows 

can be approximated by continuous polynomial functions, and 

because Chebyshev functions are essentially polynomials, 

dependent variables can be represented by finite series of 

Chebyshev functions. A Galerkin method employing Fourier 

series, although much easier to apply in such cases, would not 

allow accurate modeling of the nonperiodic flows and boundary 

conditions. The set of Chebyshev functions is also a member 

of a class of functions having the orthogonality properties 

necessary to implement the Galerkin method. 

The laminar axisymmetric flow of a low-Prandtl number 

liquid metal in a rigid, closed cylindrical container of equal 

height and radius is a case of a relatively simple nonperiodic 

flow with nonperiodic boundary conditions. The convection 

cell has a toroidal shape that is assumed to be symmetric 

about the horizontal mid-plane (Fig. 9). Although the 

convergence of flows at the center of the cylinder displaces 

the rotational center of the cell outward to a point past R/2 

39 
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(Muller et al., 1984)), both velocity and temperature with 

their boundary conditions can be represented fairly accurately 

by continuous polynomials and therefore by Chebyshev series. 

The physical transition of the fluid from the conductive 

to the convective regime can be approached mathematically as 

a perturbation problem. The laminar convection state is 

treated as a perturbation of the basic conductive state. 

Analysis of the growth of the convective perturbation 

indicates the critical point of transition between the two 

regimes. 

The axisymmetric Boussinesq system is first perturbed. 

It is then simplified by transforming the Navier-Stokes 

equation into a vorticity equation and introducing a Stokes 

stream function to reduce the number of dependent variables. 

A Chebyshev-Galerkin method is then applied to the resulting 

system of equations, Dependent variable Chebyshev series 

consisting of terms with separated variable expressions for 

time and the two spatial directions are substituted into the 

Boussinesq system. An ordinary differential equation of first 

order for each of the time-varying coefficients is obtained by 

multiplying a partial differential equation by the orthogonal 

test function of the desired time-dependent coefficient and 

integrating over the domain. Once the partial differential 

Boussinesq system has been transformed into a low-order system 
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of ordinary differential equations, the stability analysis can 

be performed. 

4.1 Perturbation of the Boussinesa System 

Perturbation of the Boussinesq system is useful because 

it allows the system to be expressed in terms of the 

convective flow variables. Normally, a perturbation analysis 

for a strongly nonlinear equation like the Navier-Stokes 

equation is not straightforward. However, in this case, the 

zero velocity field of the conductive flow field allows 

nonlinear terms to be retained in the first order equations. 

The nondimensional cylindrical Boussinesq system from 

Chapter 3, 

VTF = 0 (4 1) 

1 a+ 
pr a t *  - (- + v*-Vv*) = -Vp* + vv* + Ra T*@, (4.3) 

is used here. Assuming axisymmetric flow, the above system of 

equations can be simplified by considering the following 

properties of this flow, which hold by definition: 
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The first step in the perturbation procedure is to 

perturb the dependent variables velocity, pressure, and 

temperature. These variables are expressed as the sum of a 

basic state, conduction (0-subscript terms), and a small 

convective perturbation of this basic state (primed terms): 

v*(r*,z*,t*) = v; + v*r(r*,z*,t*) ( 4  9 6) 

p*(r*,z*,t*) = p g ( z * )  + p*/(r*,z*,t*) 
T*(r*,z*,t*) = T;(Z*) + ~*~(r*,z*,t*) 

( 4 . 7 )  

(4.8) 

In the conductive state, the velocity vector is zero, the 

temperature variation is linear, and the pressure gradient is 

hydrostatic: 

(4.9) 
* VO = 0 

p ; ( ~ * )  = p i  - (9 h3/ru2) ( z *  + 1/2) (4.10) 

T;(z*) = T; - ( Z *  + 1/2) (4.11) 

The terms p i  and T; are the pressure and temperature, 

respectively, at the bottom of the cylinder. 

Convective flow occurs if the perturbations are not 

damped over time. In that case, the perturbation variables 

represent the convective flow field. 

The expressions for v*, p * ,  and T* are substituted into 

the Boussinesq system. After some algebraic manipulations and 
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deletion of primes and asterisks, the system for the perturbed 

variables becomes: 

v v =  0 (4.12) 

dT + VVT - vz = V T  a t  (4.13) 

(4.14) 

Note the retention of the nonlinearities in the Navier- 

Stokes and energy equations. In this perturbed Boussinesq 

system as in the unperturbed, it is again apparent that a low 

Prandtl number exerts a significant nonlinear effect due to 

the inertial term 

1 - vvv Pr 
(4.15) 

This effect becomes important as soon as convection is 

initiated. In any flow regime with nonzero finite velocity 

vectors, the Navier-Stokes equations for low-Prandtl number 

fluids are highly nonlinear (e.g., Knuteson, 1989). 

4.2 Simplification of the Perturbed Boussinesa Svstem 

The stability analysis of the perturbed Boussinesq system 

involves the solution of a variational equation that is a 
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polynomial. The degree of this equation can be decreased and 

its solution facilitated by reducing the number of dependent 

variables in the perturbed Boussinesq system. In addition to 

decreasing the size of the resulting system of ordinary 

differential equations, this simplification also eliminates 

the need to determine the pressure. 

Both pressure gradient terms -Vpo and -Vp' as well as the 

conductive buoyancy term RaTOB, in the perturbed Navier-Stokes 

equation can be eliminated by taking the curl of the equation 

and thereby transforming it into a vorticity equation: 

= V X  ( F v  + RaTg,) 
Pr 

(4.16) 

A nondimensional Stokes stream function # is introduced 

to reduce the number of dependent variables from three 

(vr,vZ,T) to two (#,T) . The $ is made nondimensional by 

scaling it with the thermal diffusivity, K ,  and the height of 

the cylinder, h. The nondimensional radial and vertical 

velocities vr and v, may then be expressed in terms of $: 

vz = - 129 
r ar 

(4.17) 

(4.18) 

Because this stream function satisfies the continuity equation 

exactly, 
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r ar az (4.19a) 

(4.19b) 

(4.19c) 

= 0, (4.19d) 

the equation may be dropped, and the perturbed Boussinesq 

system reduces to a two-equation system in # and T: 

(4.20) 

[ ( '3 I*)] - R a - e ,  aTA 
ax v x  'G"---az'- r ax 

in which the Jacobian J(f,,f,) is 

af, af, af, af, 
a1 az a Z  ar J ( f , , f , )  -- - -- 

(4.21) 

(4.22) 

This system of two equations in # and T requires ten 

boundary conditions for the problem to be well posed. In the 

energy equation (eq. 4.20) , which is second-order in T in r 
and z ,  four boundary conditions are necessary to uniquely 

determine the coefficients of the particular solution for TI 

two from the r-variable and two from the z-variable. In the 



46 

same manner, six boundary conditions are needed for the 

solution of $ in the third-order vorticity equation (eq. 4.21) 

in r and z .  

The ten boundary conditions for this problem are based on 

the model of the cylindrical ampoule used in the Bridgman 

method as well as one characteristic of axisymmetric flow. 

The ampoule is considered to have rigid, no-slip surfaces: 

(4.23a) 

(4.24b) 

The radial velocity on the center line of the ampoule is zero: 

-%O.z,t) = 0 aZ (4.24) 

The top and bottom are conducting surfaces. They conduct 

heat into and out of the fluid at the fluid-surface interface, 

butthey maintain a constant temperature. Mathematically, the 

temperature perturbation is zero: 

(4.25) 

For the thermal boundary conditions at the side wall, two 

cases are considered, in the first case a side wall that is 

conducting, 

T ( l , z , t )  = 0 (4.26) 
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and in the second, a side wall that is insulated and allows no 

transfer of heat across the interface, 

(4.27) 

4.3 Chebyshev Series Representation of Dependent Variables 

In the Chebyshev-Galerkin spectral method, the dependent 

variables are represented by finite Chebyshev series. A 

separation of variables approach is used. Each term in the 

series is the product of two spatially-dependent expressions 

and a time-dependent amplitude coefficient. Successive terms 

represent modes of the flow, and the series is truncated when 

the desired number of modes is represented. The stream 

function $ and the temperature T in the perturbed Boussinesq 

system may be represented in the following manner: 
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in which the Chebyshev function T, is defined by: 

T,(x) = cos (n arccos x) x€[-l,l], n€(0,1,2,, . }  (4.30) 

The stability of a single mode, laminar axisymmetric 

flow, is being considered in the present study. The relative 

simplicity of this flow allows the number of terms and the 

specific coefficients in these Chebyshev series to be 

determined fairly precisely. This axisymmetric flow can be 

approximated easily by using Chebyshev functions, to the 

extent that the spatial coefficients ai, bj, ck, and d, can be 

determined. Even though a large number of terms is required 

to represent this flow, the analysis is simplified by the fact 

that the presence of a single mode requires that all 

constituent llsubmodesl* move together. The same temporal 

coefficient must then be common to all terms. The most 

significant result of this conciseness of the flow 

representation is that the stability analysis is greatly 

simplified. 

By way of contrast, a model that investigated the series 

of flow regime transitions on the route to turbulence would 

have to incorporate a very large number of terms with 
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differing temporal coefficients. The coefficients ai, bj, ck, 

and d, would not be able to be specified and would be 

incorporated into the appropriate temporal coefficients, Only 

in this manner could the model represent the multiplicity of 

flow regimes as well as account for the increasing number of 

superimposed modes within each flow regime as it becomes more 

complex. 

The spatial distribution of $ in the r and z planes is 

determined by the continuity requirement V - v  = 0 as well as by 

the boundary conditions for vr and v,, obtained from the 

boundary conditions for $. With these constraints, it is 

possible to represent the entire flow field by a single term 

for $ in the stream function series. 

Letting $ be the expansion 

(4.31) 

then by using the Stokes stream function definitions, the 

distributions of vr and v, in r and z can be represented in 

terms of their corresponding $ distributions: 

v , ( r , z , t )  = -- l a p  
r a Z  

(4.32a) 

(4.3213) 

(4.32~) 
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(4.33a) 

(4.33b) 

It is possible to approximate the velocity distributions by 

using polynomials. Use of these direct relations between the 

velocities and $ then allows determination of approximate J /  

spatial terms in Chebyshev series. 

For example, examination of the axisymmetric flow field 

(Fig. 10) reveals that the radial variation in v,(r,z,t) for 

r~[0,1] may be approximated by a cubic polynomial (Fig. 11). 

This rotational flow is assumed to move downward at the center 

of the cylinder. This direction of flow is not critical. 

Four conditions that specify this cubic curve include the 

velocity boundary conditions: 

- v,(l,z,t) = 0 (no-slip condition at side wall) (4.34) 

- v,(l,z,t) = 0 (no-penetration condition) (4.35) 

- av,/ar(o,z,t) = 0 (maximum v, value at center 
line) (4.36) 

- v,(O,z,t) = -1 (arbitrary intercept) (4.37) 

The derivation of v,(r) depends directly upon v,(r) , both 
being functions of $. The v, condition above (eq. 4.35) is 

necessary to ensure that the form of v, allows this condition 

to be met upon derivation of v,. 
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Letting v, (r) be the following general cubic polynomial, 

v,(r) = ar3 + br2 + cr  + d, (4.38) 

the intercept condition (eq. 4.37) determines d = -1, and the 

maximum condition (eq. 4.36) determines c = 0. Substituting 

these values, the no-slip condition (eq. 4.34) becomes 

a + b = l  (4.39) 

For the no-penetration boundary condition, vr(r) must first be 

derived, employing the mutual dependence on $. The variation 

o f  fi in r is first found by taking the polynomial for vZ(r) 
and integrating to solve for fi(r), 

(4.40) 

(4.41a) 

(4.41b) 

(4.41~) 

The variation in r for vr then becomes (Fig. 12): 
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(4.42a) 

(4 , 42b) 

The constant of integration 19e11 must be zero in order for 

vr(r) to be defined at r = 0. The no-penetration condition 

then becomes: 

- + - = o  a b  
5 4  

(4.43) 

Solving for the coefficients a and b using the above equation 

4.43 and equation 4.39, a = -5 and b = 6. The equation for 

vZ(r) becomes (Fig, 11) : 

v,(r) = -5r3 + 6r2 - 1 (4.44) 

This curve models the salient physical features of the 

flow. The change in sign of the vertical velocity in this 

closed container indicates flow rotation. The location of the 

r-intercept to the right of r = R/2 as well as the relative 

magnitudes of the maximum and minimum on the interval show the 

flow convergence at the center. The flow profile at the wall 

takes the approximate shape of a boundary layer, 

The equation for vr(r) is (Fig. 12): 
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3 1 
2 2 v,(r) = -14 + -r3 - -1 (4.45) 

The radial velocity v, is zero at r = 0, and the profile near 

the center is similar to that of a boundary layer. 

The equation for $(r) is: 

(4.46) 

For the purposes of the Galerkin method, $(r) may be expressed 

in Chebyshev form as: 

@(r)  = [-‘T5 (2r-1) - -T, 1 (2r-1) + -T3 3 (2r-1) + 512 128 512 

-T2 1 (2r -1) -- T1(2r-1)-- T0(2r-1)] 
32 256 128 

(4.47) 

Expressing $ in terms of the quantity 2r-1 for r~[O,l] 

effectively translates the expression into the domain of all 

Chebyshev functions, [-1,1], and allows the orthogonality of 

Chebyshev functions to be used to simplify the integration of 

the equations in a later step. 

In a manner similar to the procedure above, the $ ( z )  , 
v,(z) (Fig. 13), and v,(z) (Fig. 14) terms for  ze[-%,%] can be 

determined. Using the relationships in equations 4.32b,c and 

4.33b,c the equations for v,(z) and v,(z) can be related 

through $: 
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(4.48a) 

(4.48b) 

The following conditions are used to derive a quartic 

distribution for v , (z )  and a cubic distribution for vr(z): 

* v, (r, ++, t) = o (no-penetration) (4.49) 

vr(r,++,t) = 0 (no-slip at top and bottom boundaries) 
(4.50) 

- av,/az(r,O,t) = 0 (maximum v, value at midplane) (4.51) 

- v,(r,O,t) = 1 (arbitrary intercept) (4.52) 

- avr/az(r,f.29,t) = 0 (maximum v, value) (4.53) 

The last condition for fixing the height of the maximum 

radial velocity vr(z) allows the thickness of the boundary 

layers at the top and bottom to be modified. The values of 

z=-L.29 were chosen to smooth the transition of the maximum 

v,(z) value at 0.8R near the side wall (Fig. 11) to these 

maximum v,(z) values at z=+0.21h. The f.29 values also allow 

integer values of the coefficients. 

After some algebra, the following distributions are 

derived: 
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@ ( Z )  = 16z4 - 8z2 + 1 (4 54a) 

- -T , (~z )  - -T2(22) 7 + -T , (~z ) ]  99 - [ 1218 32 128 

v , ( z )  = 64z3 - 162  

(4.54b) 

(4.55) 

v,(Z)  = 1 6 ~ *  - 8z2 + 1 (4.56) 

Note the antisymmetry of the v,(z) curve, the flow moving in 

towards the center at the top and outward at the bottom. 

Combining the two spatial expressions, $ becomes: 

T1(2r-1) - -T3 (2r -1)  + -T2 (2r -1)  -- 
512 32 256 

3 1 

3 1 7 
128  128 32 
-To(2r- l ) l  [-T,(~Z) - -T2(22) + 

(4.57) 99 -To (22)  I 128  

in which the subscripts i and j of t,bij denote the highest 

degree Chebyshev function in 1: and 2, respectively. 

It may appear that the above Chebyshev series for $ (eq. 

4.57) does not follow the form given in eqn 4.28b for the 

Galerkin method, in that there is only one temporal 

coefficient, &*(t), for all eighteen distributed products 

Ti(r)Tj(z). However, there is only one mode being considered 
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here, so that each constituent part of the flow moves together 

with the whole. The temporal coefficient is the same for each 

term and may be factored out. 

The flow field appears as in Fig. 15 for constant unit 

temporal coefficients. 

In the case of the temperature expansion, the choice o f  

terms is based upon physical arguments from experimental 

findings. The two phenomena that are significant are the 

vertical redistribution of heat due to convection and the 

strong correlation between the temperature distribution and 

the vertical velocity (Shirer, 1987). The temperature 

function can be decomposed into a two-term expansion 

incorporating these features: 

( 4 . 5 8 )  

The strong correlation between the temperature 

distribution and the vertical velocity v, allows use of a 

temperature profile similar to that of the vertical velocity 

v,. Two separate thermal boundary conditions are considered 

for the side wall. In the case of a conducting side wall, the 

temperature perturbation is zero at the wall, and the 

temperature distribution T1 (r, z , t) (Figs. 16, 17) is assumed 
to be the same as that of v, (Figs. 11, 14) : 
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P ( r , z , t )  = P(t)  P ( r )  P ( z )  (4.59a) 

= T34( t )  [-5r3 + 6r2 - 11 [16z4 - 8z2 + 11 (4.59b) 

For the case of insulated sides, in which the derivative 

of the temperature with respect to r is equal to zero, a fifth 

degree polynomial that approximates the r-variation but with 

a zero r-derivative at r = 1 is chosen (Figs, 18, 19): 

= TS4( t )  [6.0r5 - 11.3r4 + 2.01~ + 4.6r2 - 11* 

[16z4 - 8z2 + 11 (4.60b) 

The coefficients for this polynomial are rounded to the 

nearest tenth. In the attempt to construct a curve similar to 

the conducting case profile at every point except near the 

side wall, the following conditions were used: 

* T(O,z,t) = -1 (same T-intercept) (4.61) 

* T(.558,z,t) = o (same r-intercept) (4.62) 

- T(l,z,t) = .28 (same maximum T value) (4.63) 

* T'(O,z,t) = 0 (minimum T at r = 0) (4.64) 

* T'(l,z,t) = 0 (r-derivative of T = 0 at r=l) (4.65) 

TJ(.528,z,t) = 2.02 (same slope at r-intercept) (4.66) 

The relative maximum over re[O,l] of the resulting curve is 

not at the side wall, but at r = .857. Its value of -.297 

does not vary sufficiently from the conducting side wall 
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maximum of . 2 8 0  to cause undue concern. The two different 

distributions are compared in Fig. 20. 

The second term of the temperature expansion represents 

the vertical redistribution of heat due to convection. 

Relative to the linear conductive temperature distribution, 

convection heats the fluid at the top of the container and 

cools the fluid at the bottom. This antisymmetric 

distribution is independent of r, and it can be represented by 

a cubic polynomial (Fig. 21): 

T 2 ( r , z , t )  = T,,(t) [-32z3 + 821 (4.67a) 

= To3 ( t )  1-T3 (22)  + Tl (2Z) 1 (4.6733) 

The final Chebyshev series for the two temperature 

expansions are, for conducting sides, 

3 2 1  [ 352 16  32 
T ( r , z , t )  = T34( t )  --T3(2r-1) - -T2(2r-1) + -T1(2r-1) - 

To3 (t) [-T3 (22) + Ti (22)  I 

and for the insulated side wall, 

T ( r , z ,  t )  = TS4(t)  [6 .Or5 - 11.3r4 + 2 . 0 1 ~  + 4 . 6 r 2  - 101 * 

(4.68) 
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37 T4(2r-1)  - = T5,(t)  [ET5(2r--1) 6 + - 
1280 

3725 T3(2r-1)  -- 925 ~ ~ ( 2 r - i )  + - 4 8 3 ~ 1 ( 2 r - 1 )  - 
32000 8000 640 

1 11857T0 (2r-111 [TT, 1 (22 )  - y T 2  1 ( 2 z )  + -T0(2z)  3 + 
1280  8 

(4.69b) 

4.4 Chebvshev-Galerkin SDectral Method 

The Galerkin spectral method converts the perturbed 

Boussinesq system into a system of ordinary differential 

equations in the temporal coefficients. The reason for this 

transformation is that stability theory for systems of 

ordinary differential equations is much easier and more 

refined than for systems of partial differential equations. 

Although this system models the flow in the conductive and 

laminar flow regimes, it is the mathematical stability of the 

system and the physical stability of the modeled flow itself 

that are actually being considered. 

The inaccuracy inherent in the representation of the 

dependent variables $ and T by approximate Chebyshev series is 

mitigated by the weighted residual technique of this method. 
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The general procedure (e.g., Canuto et al., 1990) is as 

follows . 
Let the perturbed Boussinesq system be represented by 

-& - M(u) = 0 a t  
in which 

d r , z , t )  = ( @ ( r , z , t ) , T ( r , z , t ) )  

The Chebyshev series approximation for u is 

(4.70) 

(4.71) 

(4.72a) 

(4.72b) 

These expansions may not satisfy eq. 4.70 exactly over the 

whole interval, the residuals 

- auN - M(uN) at  (4.73) 

not being everywhere zero. The optimal solution is obtained 

by requiring that the integrals of the weighted residuals, 

vanish over the interval. 
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The residual is weighted by the test functions @(r) and 

These two functions are chosen to be orthogonal to the @(z). 

corresponding spatial expansions uk over the interval: 

(4.76) 

in which Skl is the Kronecker delta. 

In the Galerkin method, test functions are chosen to be 

the same type of functions as in the spatial expansions, in 

this case, Chebyshev functions. For a 

function Ti(x), the test function is 

The weighted orthogonality condition is: 

The weight is the radical denominator. 

expansion consisting of a finite Chebyshev 

P 
u ( x )  = biTi (XI 

i = O  

single Chebyshev 

(4.77) 

(4.78) 

For a spatial 

series, such as 

(4.79) 

one possible test function is: 
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(4.80) 

The result of the orthogonality in this case is 

(4.81a) 

(4.81b) = x b:+- 1 (b: + b: + . . . +bg)] L 
This particular test function is chosen for two reasons. The 

first is that having the sum of the squares of the Chebyshev 

coefficients bi (eq. 4.81b) ensures that the entire set of 

temporal coefficients ak(t) of equation 4.72 will always 

appear in the equation, never taking a value of zero. The 

second reason is that each constituent part is certain to be 

represented. This type of test function is applied 

consistently to all three derived equations. 

Once these test functions have been determined, the 

system of integral equations can be solved, resulting in a 

low-order system of ordinary equations in the temporal 

coefficients: 
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- dak - f (a , )  = 0 k = 1,2,...,N (4.82) 
d t  

This Chebyshev-Galerkin spectral method is applied first 

to the case of conducting side walls. This situation is 

algebraically easier than the insulated side wall case because 

of the less complex form of the temperature expansion. The 

T,,(t) equation is found first to illustrate the method. 

The T3,(t) equation is derived from the perturbed energy 

equation, which contains the time derivative of T and 

therefore the time derivative of its component T3,(t). 

The expansions for the stream function # and the 

temperature for conducting side walls, 

1 = pS4 (t)[-1T, (2r-1) - -T4 128 (2r -1) + 512 

3 1 1 -T3 (2r-1) + -T2 (2r-1) - -TI (2r-1) - 512 32 256 

3 7 -To (2r-1) -T4 (22) - -T2 (22) + 128 ] [ 188 32 

(4.83a) 

(4.83b) 

and 
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To3 (t) [-T3 (22)  + T,(2z)] (4.84b) 

are substituted into the perturbed energy equation, 

(4.85) 

The equation is then multiplied by the test functions for 

T3*(t) and integrated over the domain: 

where the test functions for T,,(t) are 

(4.87a) 

2[--T3(2r-1) 5 - -T2(2r - l )  3 + z T 1 ( 2 r - 1 )  - - T ( 2 r - l ) ]  5 
- 32 16 32 16  - 

41- (2r -1)  

(4.87b) 

and 
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(4. aaa) 

The coefficient '1211 in the numerator of the test functions is 

the constant resulting from the transformation of eq. 4.78 in 

x to one in either 2r-1 or 22. 

The software package "Mathematicaal was used to perform 

the integration. The capabilities of this software are such 

that each term must be evaluated separately. The resulting 

equation for the time variation in T3,(t) is: 

(4.89) 

Note that the equation is nonlinear, and that all terms have 

been retained from the original equation. 

This procedure is repeated to obtain the TO3(t) equation 

from the energy equation and the $(t) equation from the 

Navier-Stokes equations to complete the system: 

17868Prp54(t) + -PrRaT,,(t) 42 
355 71 &(t) = - 

(4.90) 

(4.91) 

In the Tto3(t) equation, note that the integration of the 
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(-l/r) (&,b/ar) term produces a zero. In the $‘(t) equation, 

the term derived from the v-vv term of the perturbed 

Boussinesq system is zero. The absence of this nonlinear term 

in the case of a low-Prandtl number fluid would be significant 

if the stability of any convective flow regime with its finite 

velocity vectors were being considered. In the present work, 

however, conductive stability with its zero velocity vector is 

of interest, and the loss of this inertial term has no effect. 

These same features can be seen in the case of insulated 

side walls. The same Chebyshev-Galerkin procedure is 

followed, the difference being the use of the insulated form 

of the temperature expansion and its test function. 

*14(t) = Pr *54(t) + 426 2765 P r  R a  TSa( t )  355 

38915152 TS4 ( t)  - 
1361605 

3209800 *54 ( t )  ~ 0 3  ( t>  6029965 

( 4 . 9 2 )  

(4.93) 

( 4 . 9 4 )  

In form, this system is similar to that of the conducting side 

wall case, the only difference being the replacement of the 

TO3(t) term in the nonlinear term in the T63(t) equation 

(4.90) with TS4(t). The most noticeable difference is that 

the magnitudes of the coefficients of Ts4(t) are relatively 
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larger in this insulated set of equations than those of the 

coefficients of T3*(t) in the conducting case. This increase 

may introduce more damping of the growth of the stream 

function variable and consequently of the flow. 

Both of these systems of first order ordinary 

differential equations are now in a form amenable to stability 

analysis. The small number of equations is a reflection of 

the relative simplicity of the laminar axisymmetric flow. In 

the stability analysis of the next chapter, the critical point 

of transition from the conductive regime to the convective 

regime is determined. 
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Ficrure 9. Toroidal shape of axisymmetric convection cell. 



69 

1 

Ficrure 10. Laminar axisymmetric flow field, y=l, for water 

(Pr=6.7) ( Muller et al., 1984) 
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r 
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Ficnrre 15. Axisymmetric flow field for $ (r, z) in half -section 

of cylinder with y=l. Flow rotates counterclockwise, falling 

at the center. 
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FiQure 19. z-variation of insulated T1(r,z,t) expression. 
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CHAPTER 5 -  LOCAL STABILITY ANALYSIS 

The crystal melt exhibits a number of different flow 

patterns on the route to turbulence, from the conductive state 

of quiescent flow, through laminar and periodic convective 

flows, to full-scale turbulent convection (e.g., Knuteson, 

1989). The point of transition at which the onset of a new 

flow regime occurs is called a bifurcation. The Rayleigh 

number values at these points of bifurcation are known as 

critical Rayleigh numbers, and they are numbered in the order 

in which they occur. In this study, the critical Rayleigh 

number at the onset of laminar convection, the first critical 

Rayleigh number, RaCl, is determined. 

Each of the different flow regimes is *'stable*' over its 

particular range of the Rayleigh number. A stable flow regime 

is one in which the physical perturbations induced by changes 

in the forcing temperature gradient are sufficiently damped by 

viscosity and thermal conductivity to maintain the distinct 

qualitative characteristics of the flow. Flow instability at 

the bifurcation is caused by the undamped growth of 

perturbations, resulting in time in a qualitatively different 

flow pattern (e.g., Gelaro, 1987). To determine the stability 

of a flow or the stability of its mathematical model is to 

determine the bifurcations. 

The flow patterns in the melt are characterized by 

81 
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greater complexity and loss of regularity as the Rayleigh 

number is increased. The stability of the corresponding 

solutions of the mathematical model can themselves be 

categorized by their degree of complexity. Bifurcations are 

either local or global, depending upon the degree of 

regularity of the temporal behavior of the solution (e,g,, 

Thompson and Stewart., 1986). For the two systems of ordinary 

differential equations derived in the last chapter, the local 

bifurcation at the transition from conduction to laminar 

convection will be examined. The stability analysis is then 

said to be a local stability analysis. 

The local stability analysis of systems of ordinary 

differential equations that are nonlinear is difficult to 

approach directly. If possible, the system is simplified by 

a reduction of dimension or by a linearization technique 

(e.g., Wiggins, 1990). The linearization approach is pursued 

in the present study. The determinant of coefficients of the 

linearized system is examined to determine the first critical 

Rayleigh number (e.g., Gelaro, 1987) for both the conducting 

and insulated side wall cases. 

5.1 Local Bifurcation Theorv 

Local bifurcations are those changes in stability that 
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occur for relatively simple flow patterns and solutions (e.g., 

Argyris et al., 1991). For Rayleigh-B6nard convection, the 

initial conductive state and the laminar and periodic 

convective flow patterns are either steady or repetitive in 

nature. The solutions of the systems of equations derived in 

the last chapter reflect this simplicity. Procedures for 

determining the stability of these solutions are fairly 

straightforward (e.g., Wiggins, 1990). On the other hand, 

flow regimes past the periodic are more complex spatially and 

temporally. Determination of these global bifurcations is 

therefore more difficult (e.g., Wiggins, 1990). 

In the present study, for example, consider the solution 

vector ( ~ , b ~ ~  (t) ,TS4 (t) ,TO3 (t) ) for the case of the insulated 

side wall. For the conductive solution, all convective 

perturbations are zero, so that the solution is the zero 

vector ($54(t) ,TS4(t) ,TO3(t)) = ( O , O , O ) .  This is a single 

point in the solution plot, it is time-invariant, and it is 

decidedly s110ca181 in nature. Similarly, for fixed Rayleigh 

number, the plot of the time-invariant solution for laminar 

convection consists of two distinct points (e.g., Thompson and 

Stewart., 1986). A solution need not be time-invariant to be 

local, The periodic solution is also local because its three- 

dimensional solution plot or "trajectoryI1 is fixed in the 

solution space and does not vary beyond one period. The 

solutions are lllocall* in the sense that their trajectories 
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have a decidedly simple structure in the solution plot. The 

plots of "global" solutions, on the other hand, have a more 

complex structure and occupy a larger portion of the solution 

space (e,g,, Argyris, 1991). The loss of stability-the 

bifurcation--is the transition from one solution or structure 

to another, It is the stability of the conductive solution 

and structure in the vicinity of the first critical Rayleigh 

number that is of interest in the present study. To 

investigate the stability of the conductive regime of the 

liquid melt, the stable conductive solution must first be 

found . It is the time-invariance of this "stationary" 

solution that allows it to be determined easily. 

5.2 Stationarv solutions 

Stationary solutions are the time-invariant solutions of 

a system of ordinary differential equations. In the present 

study they are necessary for the local stability analysis 

because they are the base state in the perturbation procedure 

of the linear approximation, The definition and general 

procedure for their determination are as follows (e-g., 

Wiggins, 1990). Consider a system of ordinary differential 

equations 
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- = f ( X ) ,  
dt 

"Stationary" solutions are those solutions 

E E Itn 

such that 

f ( 3  = o  (5.3) 

Stationary solutions are solutions that do not change over 

time. Each system is characterized by a set of time-invariant 

or convective solutions representing the 

conductive and laminar convective flow regimes. This 

definition does not imply that the flow itself is physically 

stationary, but that the flow pattern is stable and does not 

vary over its own temporal scale. For example, laminar flow 

is stationary but is certainly not quiescent. The stationary 

flows represented by such stationary solutions often exhibit 

variance in the flow near flow transitions if sufficiently 

perturbed, but these flows are transient (e-g-, Thompson and 

Stewart. , 1986). 
In the present study, the system is expressed in terms of 

the temporal convective perturbations of the flow, &*(t), and 

of the temperature, T34(t) or TS4(t), and TO3(t). The 

stationary solutions of the nonlinear system for the 

conducting side wall, 
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= - 17868pqi54(t)  + 7iPrRaT3,(t) 42 
Jr;4 (t) 355  

may be found by letting the time derivatives be zero, 

@i4( t )  = T i 4 ( t )  = T i 3 ( t )  = 0 (5.7) 

letting the stream function and temperature variables be 

constant, 

( 5 . 8 )  S 
Jr54 ( t )  = g4, T34(t )  = T34, and T03(t) = T& 

and solving for these stationary variables. The three 

solutions that result are the conductive solution, 

g4 = 0, T& = 0 ,  T& = 0 

and two convective solutions, 

-1692188606464 + 587059200Ra 
342 4 56 59 6 87 

e 4  = 

(5 .9)  

(5.10) 

1489 (-1692188606464 + 587059200Ra) 
T& = 22]( 8084167) 1 5 R a  (5.11) 

-1692188606464 + 587059200Ra 
3 2 87 53 1520 R a  

T& = (5 .12 )  

and 
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-4-1692188606464 + 587059200Ra 
34245659687 

# e 4  = (5.13) 

1489 (-1692188606464 + 587059200Ra) T& = -'d ( 8084167) (5.14) 15Ra 

-1692188606464 + 587059200Ra 
3 2 87 53 15 2 0 Ra T& = (5.15) 

Note that these solutions are solutions of the nonlinear 

system. The stationary conductive solution is essentially a 

zero-convection stationary solution. The two convective 

solutions differ only in the change in sign of the I& and T& 

solutions. These solutions are the two different rotational 

directions the flow may follow--flow rising or falling in the 

center of the cylinder. It should be noted that the radicals 

in these convective solutions are imaginary f o r  a value of the 

Rayleigh number less than -2882.5. Imaginary values for the 

stream function and temperature variables indicate flows that 

do not exist. It will be shown later that this Rayleigh 

number is the critical Rayleigh number marking the transition 

between conductive and laminar convective flow, It may also 

be noted that the Prandtl number is not a parameter in these 

radicands, suggestingthe possible Prandtlnumber-independence 

of this flow regime transition, 

For the insulated side wall case, the solutions are the 

conductive state, 
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&I = 0, T y  = 0, = 0 

and the two convective solutions, 

(5.16) 

644 ( 14$::z635 (-21555414014016 + 9244915750Ra) 

52115 &i' = 

(5.17) 

46084 ( 14:::1635 (-21555414014016 + 9244915750Ra) 

483 87 5 Ra 
(5.18) 

T y  = 

(5.19) 8198031 (-21555414014016 + 9244915750Ra) 
421592157461282500Ra 

T&I = 

and 

-641) ( 14::1:635 (-21555414014016 + 9244915750Ra) 

52115 
(5.20) 

lei' = 

-46086 ( 14:1::635 (-21555414014016 + 9244915750Ra) 

4 83 87 5 Ra 
(5.21) 

2 - y  = 

8198031 (-21555414014016 + 9244915750Ra) (5.22) 
421592157461282500Ra 

2-y = 

In this case, the radicals in these convective solutions are 

imaginary for a value of the Rayleigh number less than 

-2331.6. 

In the following linear approximation of the local 

stability analysis, the linearized system of equations is 

perturbed about these stationary solutions and the first 
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critical Rayleigh number is determined. 

5.3 The Linear Amroximation 

The two systems of ordinary differential equations that 

were derived in the last chapter from the perturbed Boussinesq 

system are strongly nonlinear. The local stability analysis 

of nonlinear systems of ordinary differential equations such 

as these is difficult to approach directly. In the present 

study, the system is simplified by a linearization technique 

(e.g., Wiggins, 1990). 

The linear approximation of the nonlinear local stability 

of the conductive solution is approached by a perturbation 

method. In this second perturbation of the original 

Boussinesq system, the basic state is the stationary 

conductive solution. The system is transformed into a system 

in terms of the convective perturbations. By using this time- 

invariant basic state, the temporal decay or growth of the 

perturbations alone indicates respectively the persistence of 

conduction or the initiation of laminar convection. 

In the linearized system of ordinary differential 

equations representing the flow, solutions are exponential 

expressions of the form 



90 

ceAt , C€R, A€C (5.23) 

in which is an eigenvalue of the matrix of coefficients of 

the linearized system (e.g., Gelaro, 1987). Each eigenvalue 

A represents one solution of the system. The sign of the real 

part of the eigenvalue determines the existence of the growth 

or the decay of its particular solution, and the magnitude of 

the real part determines the rate of this growth or decay. An 

eigenvalue with negative real part indicates exponential 

decay, a positive real part results in exponential growth, and 

a zero real part indicates neutral stability, neither growth 

nor decay. It is sufficient for any one real part of the set 

of eigenvalues to be positive for the system itself to be 

unstable (e.g., Gelaro, 1987). In the linear approximation, 

physical stability corresponds mathematically to the entire 

set of eigenvalues having negative real parts. Physical 

instability is initiated mathematically when any one of the 

real parts of the eigenvalues becomes positive. Zero real 

values of the eigenvalue therefore may reveal the changes of 

sign that in turn indicate changes in stability. 

For values of time t near zero, solutions are said to be 

'91earI~ the closest time-invariant stationary solution. For 

the linear solutions, the perturbations ceXt themselves are 

close to zero, and the solution approaches the stationary 

basic state. In this same neighborhood, the nonlinearities in 



91 

a nonlinear solution are products of very small quantities, 

effectively making them insignificant. In the vicinity of a 

stationary solution, the true nonlinear solution and the 

linear approximation are therefore asymptotic (ems., Wiggins, 

1990). The result is that the linear behavior of a solution 

is the same as the nonlinear behavior near a stationary 

solution. If a linear solution is stable or unstable near the 

stationary solution, then the nonlinear solution is 

correspondingly stable or unstable (e.g., Wiggins, 1990). 

The real parts of the eigenvalues of the linear system 

consequently indicate the nonlinear local stability of the 

system. The presence of a single positive eigenvalue 

indicates linear and nonlinear instability. However, a 

problem arises for zero eigenvalues. A zero eigenvalue, which 

indicates neutral stability of the linear system, is 

indeterminate for the stability of the nonlinear system (e.g., 

Wiggins, 1990). Slight differences between the linear and 

nonlinear solutions near a stationary solution could "push" 

the stability of this particular solution either way. Only if 

the real parts of all eigenvalues of the linearized system are 

nonzero is the behavior of the linear approximation near a 

stationary solution the same as the nonlinear system (e.g., 

Wiggins, 1990). 

In the physical system of the liquid melt, as well as in 

the nonlinear system modeling the flow and in its linear 
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approximation, the Rayleigh number is the critical parameter 

determining the flow regime stability (e.g., Rrishnamurti, 

1973). The Rayleigh number appears as a parameter in the 

eigenvalue equation, and it determines the sign of some of the 

eigenvalues. Critical Rayleigh numbers indicate the loss of 

stability of a stable solution, and they occur in sets of 

eigenvalues whose real parts are all negative, as the sign of 

any one real part changes to positive (e.g., Wiggins, 1990). 

This change in sign indicates a change in the stability of the 

system and a transition in the flow regimes. Although the 

real part of the eigenvalue is zero at this point and the 

linear approximation is not valid there, the critical Rayleigh 

number is the limit of stable and unstable solutions on either 

side that are valid. As the limit of such behaviors, it does 

indicate a change in stability. 

In the linear perturbation of the system of ordinary 

differential equations for the conducting side wall, the basic 

state is convective flow, and the perturbation represents a 

small disturbance of this flow. In general, the basic state 

is a stationary flow or solution, and the perturbation is a 

function of time (e.g., Gelaro, 1987): 

(5.24) 

(5.25) 
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T,,(t) = 2'; + T&(t) 

These are substituted into the nonlinear system, 

42 
355 7 1  

86 Pr @54 ( t) + - PrRaT,, ( t) @;4( t )  = - 

( 5 . 2 6 )  

(5.27) 

(5.28) 

(5.29) 

Only terms that are of the order of the perturbations are 

retained: 

(5.30) 

(5.31) 

(5.32) 

Note that the system is now expressed in the perturbation 

variables. The stability of these variables determines the 

stability of the entire system. It is the eigenvalues Xi of 

this system that are to be investigated. It is more 

illustrative of the method to determine these by transforming 

the system into a system of variational equations than to find 

the eigenvalues directly (e.g., Gelaro, 1 9 8 7 ) .  The system 
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above has perturbation solutions of the form: 

~ o p 3  (t) = 903eLt (5.35) 

The effect of the sign of the eigenvalue on the growth of the 

perturbation is evident here, If these expressions are 

substituted into the linearized system, the variational 

equations become: 

17868 Pr + A)$'54 + -;j?PrRa?3, 42 = 0 -( 355 

777 T s Q  777 s 
34 54 + ----*54~,4 - (48 + a) pO3 = o 2048 2048 

(5.36) 

(5.37) 

(5.38) 

The system above allows determination of the eigenvalues for 

any stationary solution. In the present study the conductive 

stationary solution is of interest, and the system can be 

simplified considerably by letting the stationary solutions be 

the zero-convection solution: 
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17868 Pr + ~ ) p ~ ~  + =P~R~P,, 42 = o -( 355 

138728 + A)d, = 0 
954 - (  4095 

(5.39) 

(5.40) 

(48 + = 0 (5.41) 

For this system to have a nontrivial solution, the determinant 

of coefficients must be zero. The eigenvalue equation is a 

third degree polynomial in A: 

17868Pr 138728 - 
4095 

17 86 8Pr + 

4095 
(48  + A l p 2  + A( 

355 

S P r R a ]  7 1  = 0 

The eigenvalue solutions of this equation are: 

1, = -48 

138728)2 4095 - 
138728) Y.[(17868Pr + 

4095 355 

17868 138728 - SRa)]f 4Pr( 
355 4095 7 1  

(5.42) 

(5.43) 

(5.44) 

Eigenvalue A, is a constant, negative real number, indicating 

stability for its particular solution. Because the Prandtl 

number is always positive, the real part A, will always be 

negative, the radical being either a positive real number or 

a pure imaginary. 
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The sign of the real part of A,, however, depends upon 

the radicand. Because A, is of the form 

- fl + 4-2 

the sign of the quantity 

17868 138728 - GRa) 
4Pr( 355 4095 71 

(5.45) 

(5.46) 

determines the sign of the real part of A, and consequently 

the stability of the system. If this quantity is positive, 

which occurs for a Rayleigh number less than -2882.5, the 

radical term will be either a positive real number less than 

4095 
1 17868Pr + 

-y( 355 (5.47) 

or an imaginary number, and the real part of A, will be 

negative. In this case, all the eigenvalues are negative and 

the system is stable. If the quantity is negative, for a 

Rayleigh number greater than -2882.5, then the radicand will 

be a positive number such that the real part of A, will be 

positive. The system is then unstable. This value of -2882.5 

is the first critical Rayleigh number for the conducting side 

wall case. The condition that the critical Rayleigh number be 

at the change in sign of the real part of the eigenvalue has 

been met. The supposition in section 5.2 concerning the value 

of the critical Rayleigh number based on the stationary 

solutions was correct. 
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It is evident that the Prandtl number has no effect on 

the sign of A, or changes in the stability of the system. 

Therefore the change in stability is a function of the shape 

of the container and not of the fluid properties, In this 

linear model of stability, the Prandtl number does however 

have an effect on the rate of growth of the convective 

perturbation near the instability. The higher the Prandtl 

number, the larger the positive real eigenvalue and the 

greater the growth of the perturbation, 

The behavior of the system with respect to the transition 

between stationary solutions may be seen easily in the 

bifurcation diagrams of the stationary solutions for the 

stream function and temperature temporal coefficients (Figs. 

22, 23, and 24). 

The procedure for determining the critical Rayleigh 

number is repeated for the case of insulated sides (see 

Appendix A for the calculations). After considerable algebra, 

the critical Rayleigh number in this case is found to be 

-2331.6. The bifurcation diagrams are much the same as those 

for the conducting side wall case (Figs. 25, 26, and 27). 

This lower value of the critical Rayleigh number validates the 

model's treatment of the thermal boundary conditions, From a 

physical perspective, the lower value for the instability here 

indicates that less of a temperature gradient is required to 

destabilize the fluid column. This is exactly the case for 
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the insulated side wall, through which there is no heat loss. 
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Stable 

Unstable - - -  

2882.5 
RAYLEIGH NUMBER, Ra 

Fiaure 22. Bifurcation diagram for t,bS4(t), conducting side 

wall. 
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Stable 

Unstable - - -  

2882.5 
RAYLEIGH NUMBER, Ra 

Ficrure 23. Bifurcation diagram for T,,(t) , conducting side 
wall. 
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Stable 

Unstable - - -  

2882.5 
RAYLEIGH NUMBER, Ra 

FicNre 24. Bifurcation diagram for To3(t), conducting side 

wall. 
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Stable 

Unstable - - -  

233 I .6 
RAYLEIGH NUMBER, Ra 

Ficrure 25. Bifurcation diagram for $54(t), insulated side 

wall. 
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Stable 

Unstable - - -  

2331.6 
RAYLEIGH NUMBER, Ra 

Fiaure 26. Bifurcation diagram for TS4(t), insulated side 

wall. 
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Stable 

Unstable - - -  

2331.6 
RAYLEIGH NUMBER, Ra 

Fiarure 27. Bifurcation diagram for T O 3 ( t ) ,  insulated side 

wall. 



CmPTER 6 .  DISCUSSION OF RESULTS 

The Chebyshev-Galerkin spectral model of Rayleigh-Bgnard 

convection in this study is formulated upon, and exhibits, 

certain features that have been observed in experiments. 

Axisymmetric flow is found in cylinders of equal height and 

radius (e.g., Muller et al., 1984). The convergence of this 

type of flow at the center of the cylinder moves the center of 

rotation of the single convection cell outward past R/2, the 

midpoint of the radius (e.g., Muller et al., 1984). Although 

the behavior of a low-Prandtl number fluid is investigated in 

this study, both experiment and the model itself demonstrate 

the Prandtl number independence of the first critical Rayleigh 

number (Krishnamurti, 1973). 

The results for the first critical Rayleigh number from 

this study are both slightly higher than those found by 

Charlson and Sani (1970) in their Rayleigh-Ritz formulation 

for the same problem. For the conducting side wall, the value 

of 2882.5 is 13.3% higher than their value of 2545.0, and for 

the insulated side wall, the value of 2331.6 is 3.1% higher 

than their value of 2261.9. 

The experimental value of the first critical Rayleigh 

number for liquid gallium determined by Muller et al. (1984) 

had to be interpolated from their graph (Fig.. 28) for their 

aspect ratio of h/d=0.5 (y=l) because the authors did not 

105 
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state the exact numerical result. Interpolation from the 

graph gives a value for RaCl of approximately 2700 for the 

Bridgman configuration (insulated side wall). Although the 

value of 2331.6 from the present study differs by 13.6% from 

this experiment, it is closer than that found by Charbon and 

Sani (1970). 
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CHAPTER 7 .  CONCLUSION 

In this study, the onset of laminar axisymmetric 

Rayleigh-Bgnard convection is investigated for a fluid in a 

cylindrical container whose radius is equal to its height, A 

simplified model of the vertical Bridgman crystal growth 

configuration is used. Two different cases are considered for 

the thermal boundary conditions at the side wall: conducting 

and insulated surfaces. All surfaces are assumed to be solid 

and no-slip. 

The governing Boussinesq system is first perturbed. It 

is then simplified by introducing a Stokes stream function and 

by taking the curl of the Navier-Stokes equations. A 

Chebyshev-Galerkin spectral model reduces the simplified 

system to a system of first-order ordinary differential 

equations. A local stability analysis using the linearized 

system determines the two values of the first critical 

Rayleigh number for the insulated and conducting side walls. 

Although this study investigates the onset of laminar 

convection for a low-Prandtl number liquid metal in a cylinder 

with equal radius and height, the results are more general. 

The critical Rayleigh number at this transition is independent 

of the Prandlt number, so that the RaCl values obtained here 

are valid for all fluids within the parameters of the 

formulation. Furthermore, the presence of a single convection 
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cell in cylinders of aspect ratio higher than the value of one 

in this study (e.g., Tritton, 1988) suggests that the model is 

applicable to the determination of RaCl for these high-aspect 

ratio cylinders. 

The relative magnitudes of the first critical Rayleigh 

number values that are obtained, 2882.5 for the conducting 

side wall and 2331.6 for the insulated case, tend to validate 

the method. The Racl for the conducting side wall should be 

higher than that for the insulated side wall, the heat lost 

through the conducting surface not being available to initiate 

the flow transition. 

The approach used in this study results in a value of 

Racl for the case of the insulated side wall that is closer 

than that of the numerical work of Charlson and Sani (1970) to 

the experimental value determined by Muller et al. (1984). 

A more precise approach to the problem presented in this 

study would be to determine the flow and temperature 

distributions in the laminar convective regime by some 

numerical method rather than by curve-fitting. These 

distributions could be approximated by polynomials and 

Chebyshev series. The rest of the procedure would be the 

same. 

The procedure used in Chapter 5 to determine the first 

critical Rayleigh number may also be used to determine the 

second critical Rayleigh number. In this case the nonzero 
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laminar convective stationary solutions are used in the 

linearized system and its eigenvalue equation. Although the 

eigenvalue equation is a numerically more complicated cubic, 

its solution is still possible (e.g., Gelaro, 1987). 

The Chebyshev-Galerkin spectral method used in this study 

to determine the first critical Rayleigh number for a low- 

Prandtl number crystal melt must be modified to find the full 

sequence of critical Rayleigh numbers, The Chebyshev series 

expressions for the stream function and the temperature need 

to be considerably longer to account for the increased number 

of flow modes or length scales that need to be represented as 

the flow become more turbulent. These expressions must also 

allow inclusion of the inertial term of the Navier-Stokes 

equation to account for the strong nonlinearity for any non- 

zero velocity field, A serious problem with the extrapolation 

of the specific method used here is the difficulty of 

satisfying the boundary conditions. The coefficients of the 

spatial distributions in the present study could be chosen to 

satisfy the boundary conditions because there was only one 

simple flow field to model. If these coefficients are 

unknown, the boundary conditions are not automatically 

satisfied and impose added constraints. 
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APPENDIX A. LOCAL STABILITY ANALYSIS. INSULATED SIDE WALL 

The local stability analysis of the system of nonlinear 

ordinary differential equations obtained in Chapter 4 for the 

case of the insulated side wall is similar to that for the 

conducting side wall, The system is perturbed about the 

conductive stationary solution and is linearized. The first 

critical Rayleigh number is determined from the eigenvalue 

equation of the linearized system. The procedure followsthat 

of Gelaro (1987). 

In the determination of the local stability of a 

stationary convective solution, the basic state is the 

stationary convective flow, and the temporal perturbation 

represents a small disturbance of this flow. As in the case 

of the conducting side wall, the independent variables for the 

insulated side wall are represented by first-order expansions: 

T O 3 ( t )  = Tgs3 + T,P,(t) ( A - 3 )  

These expressions are substituted into the nonlinear system 

derived for the case of the insulated side wall (eqns. 4.92- 

4 . 9 4 ) ,  
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17868 2765 
Jr;4(t) = - 355 pr$54(t)  + z P r R a T , ,  ( t )  

3209800 * 5 4 ( t >  ~ 0 3  ( t )  
6029965 

The resulting system is linearized by retaining only those 

terms of the order of the perturbations: 

gi(t) = - 1 7 8 6 8 ~ r g 4 ( t )  355 + - 2765PrRaT&(t)  426 (A- 7) 

38915152 P 
7'5.4 ( t) - T03q54(t)  - 6029965 

114636 3209800 s P 
JrsPa(t) - 6029965 = 1205993 

3209800 s P 

6029965 @54T03 ( t, 

This system of first-order ordinary differential equations has 

exponential solutions of the form: 

(A.  10) 

(A. 11) 

(A .  12) 
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Substitution of these expressions into the linearized system 

yields the variational system of equations: 

2765 17868 Pr + + xPrRa?34 = 0 -( 355 

3209800 
S )  

- (38915152 + A)ps4 - 
9 5 4  1361605 

114636 - 
1205993 6029965 

3209800 s 
6029965 @54% = 0 

63805 *34954 s + 63805&4?34 16384 - (48 + = 0 
16384 

(A. 13) 

(A. 14) 

(A.15) 

The system above allows determination of the eigenvalues for 

any stationary solution. In the present study, the stability 

of the conductive stationary solution for the insulated side 

wall , 

g4 = 0, e. = 0, If3 = 0 (A. 16) 

is of interest, and the system can be simplified by letting 

the stationary solutions be this zero-convection solution: 

17868 Pr + n)P5, + wPrRaf'54 2765 = 0 -( 355 

114636 - (38915152 + = 0 
1205993 1361605 

(A.17) 

(A. 18) 

(48  + = o (A. 19) 

For this system to have a nontrivial solution, the determinant 

of coefficients must be zero. This eigenvalue equation is a 
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third degree polynomial in h: 

17868PX 38915152 - 
38915152) + 355 1361605 355 1361605 

(48 + l ) p 2  + A( 17868Pr + 

1205993 (A. 20) 

The signs of the real parts of the eigenvalue solutions 

of this equation determine the stability of the system. If 

the real parts of all the eigenvalues are negative, then all 

linear perturbations decay, and the system is stable. If the 

real part of any one eigenvalue is positive, its particular 

perturbation solution grows without bound, making the whole 

system unstable. The transition from stability to instability 

occurs at the change in sign of a single real part in a set of 

negative real parts. The first critical Rayleigh number, 

which marks this transition from stability to instability, is 

found by varying the Ra parameter to obtain the first zero 

real part at which the sign changes. 

The eigenvalue solutions of the above equation are: 

A, = -48 (A. 21) 

38915152)2 1361605 - 
38915152) +[( 17868Pr + 

1361605 355 

1 17868 38915152 - 2765 114636 
4pr( 355 1361605 426 1205993~~)]’ 

(A.  22) 

Eigenvalue A, is a constant negative real number, indicating 
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stability for its particular solution. Because the Prandtl 

number is always positive, the real part of A, will always be 

negative, the radical being either a positive real number or 

a pure imaginary. 

The sign of the real part of A,, however, depends upon 

the radicand. Because h2 is of the form 

-€, + 4- 
the sign of the 

(A.23) 

quantity 

17868 389isis2 
4pr[( 355 )( 1361605 (A.24) 

determines the sign of the real part of h, and consequently 

the stability of the system. If this quantity is positive, 

which occurs for a Rayleigh number less than -2331.6, the 

radical term will be either a positive real number less than 

1361605 
1 17868313: + -z( 355 

or an imaginary number, 

(A. 25) 

and the real part of h2 will be 

negative. In this case, all the eigenvalues are negative and 

the system is stable. If the quantity is negative, for a 

Rayleigh number greater than -2331.6, then the radicand will 

be a positive number such that the real part of h, will be 

positive. The system is then unstable. This value of -2331.6 

is the first critical Rayleigh number for the insulated side 

wall case. The condition that the critical Rayleigh number be 
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at the change in sign of the real part of the eigenvalue has 

been met . The supposition in section 5 . 2 concerning the value 
of the critical Rayleigh number based on the stationary 

solutions (eqs. 5.17-5.19 and 5.20-5.22) has again been shown 

to be correct. In this case also, the first critical Rayleigh 

number is independent of the Prandtl number. 


